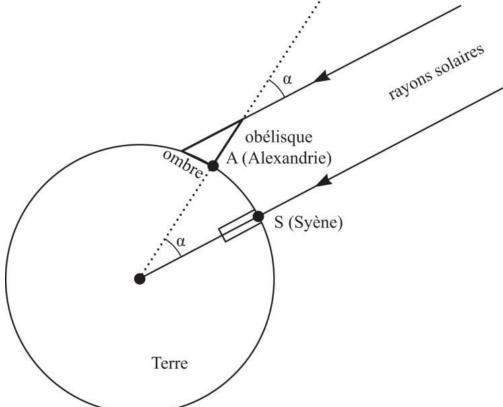
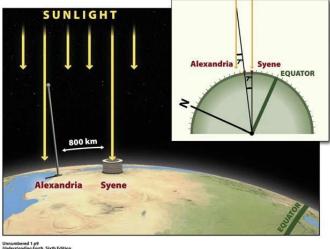


- Forte importance
- Moyenne importance
- Faible importance

- -La Terre dans l'espace
- -Rappel de tectonique des plaques
- -La Terre dans le temps

La terre dans l'espace.

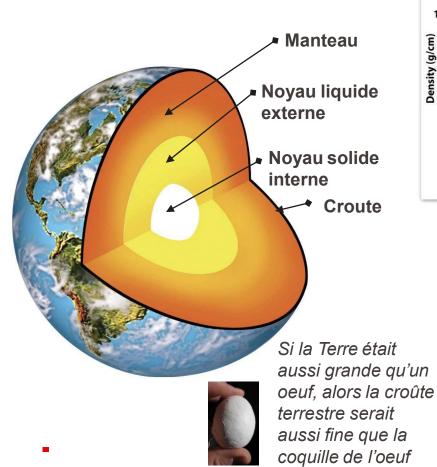

- 3ème planète du système solaire
- Distance moyenne au soleil: 150 Mkm
- Durée de rotation: 23H56
- Durée de révolution: 365.26 j
- Diamètre: ~12 800 km
- Masse: ~ 5.9 *10²⁴ kg
- Périmètre: ~40 000 kg
- Superficie: 510 067 km²

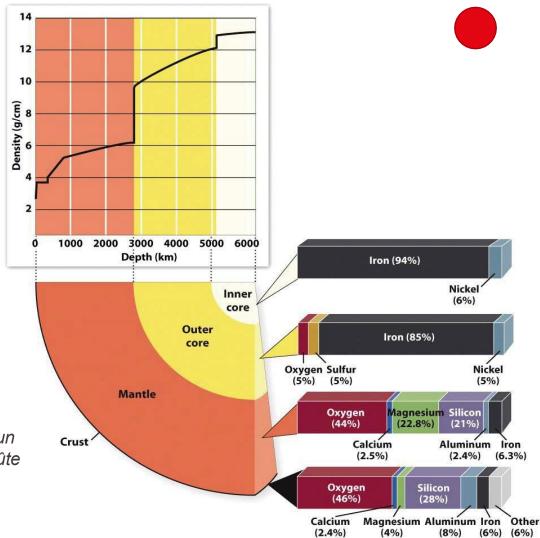

- Satellite: lune
- Age: 4.56 Ga
- Gravité: 9.8 m.s⁻²
- Température de surface
 - Maximum: 56.7 °C
 - Moyenne: 15 °C
 - Minimum: -93.2 °C

Exercise 1

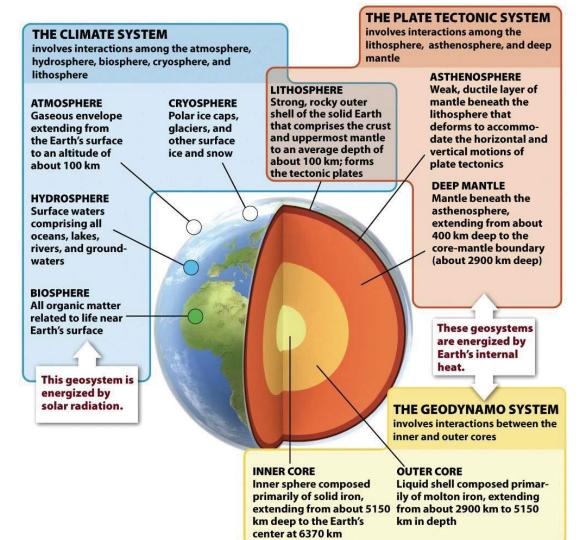
- Remettez vous à l'époque d'Ératosthène (IIIe siècle av. J.C) en Egypte.
 Ses nombreux voyages entre Syène (maintenant Assouan) et
 Alexandrie à différentes saisons lui permirent de faire des observations qui ont abouti au calcul de la circonférence de la Terre.
- Ératosthène ayant mesuré la distance entre Syène et Alexandrie; 5000 stades. 1 stade = 1/6 km.
- Quelles sont ses observations, quel raisonnement a-t-il fait et comment a-t-il calculé ce paramètre?

Unnumbered 1 p9 Understanding Earth, Sixth Edition © 2010 W. H. Freeman and Company


Mesure du rayon de la Terre par Érastosthène.


Exercise 2

- Sachant que la masse de la Terre est de 5.9 *10²⁴ kg et son rayon moyen de 6370 km, calculer sa masse volumique moyenne?
- La densité moyenne des roches de la croute terrestre étant de l'ordre de 2.7 à 2.9. Quelles conclusions peut on tirer?


8

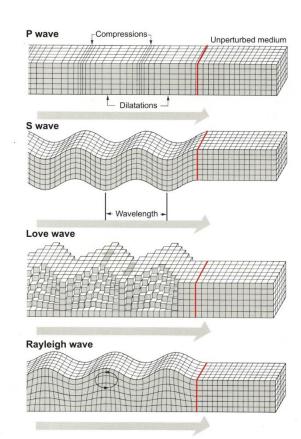
EPFL Composition

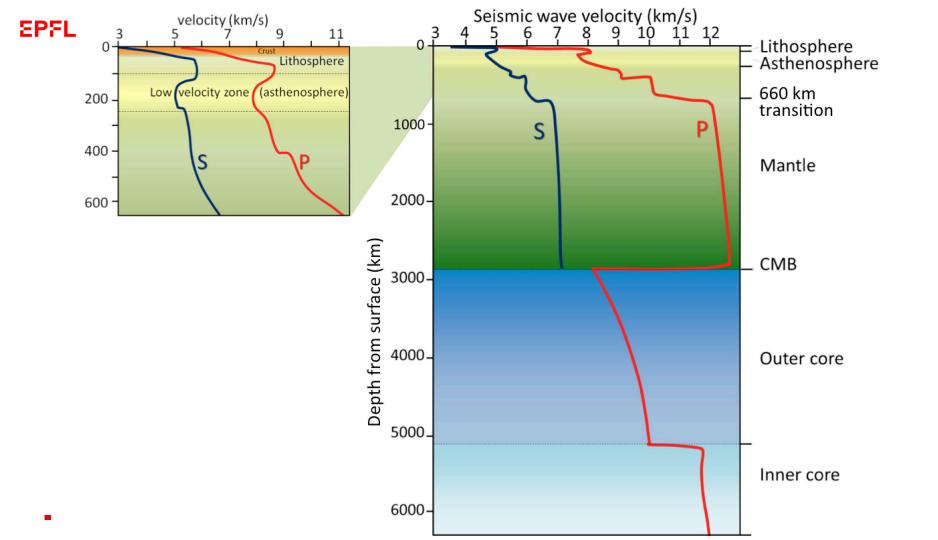
EPFL Structure

EPFL

Ondes sismiques

$$V_{P}$$


$$= \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$


$$V_{S} = \sqrt{\frac{\mu}{\rho}}$$

$$v = \frac{3K - 2\mu}{2(3K + \mu)}$$

$$= \frac{1}{2} \frac{V_p^2 - 2V_s^2}{V_p^2 + \mu}$$
K bulk modulus

- Vs < Vp
- Vs = 0 if $\mu = 0$ (fluids)

EPFL

Elévation

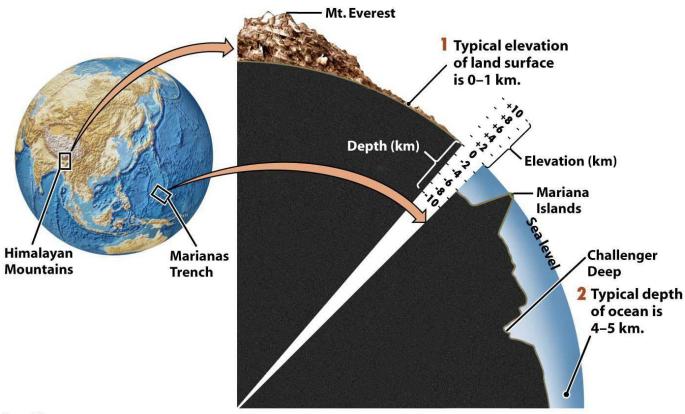
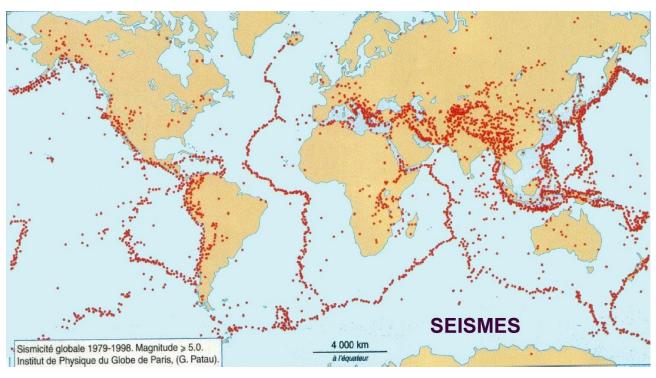
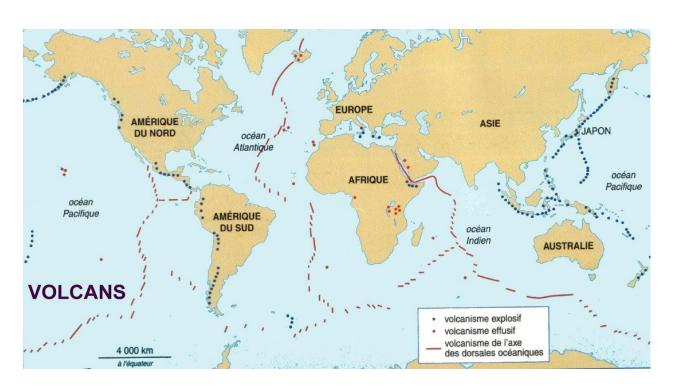


Figure 1-3
Understanding Earth, Fifth Edition
© 2007 W.H. Freeman and Company


Rappel de tectoniques des plaques

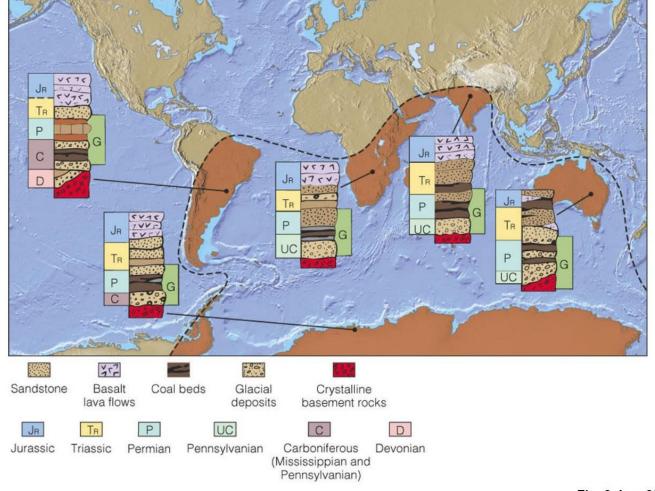
Tectonique des plaques


- La tectonique des plaques est un modèle scientifique expliquant la dynamique globale de la lithosphère terrestre.
- Ce modèle théorique a été constitué à partir du concept de dérive des continents, qui fut développé par Alfred Wegener au début du XXème siècle.
- Ces plaques ont des mouvements relatifs différents, ce qui génère différents types de limites entre elles : convergentes, divergentes ou transformantes.
- Au niveau de ces limites, de nombreux phénomènes géologiques : séismes, activités volcaniques et formation de chaines de montagnes ou de fosses océaniques.
- Le mouvement relatif latéral varie d'une plaque à l'autre et est compris entre 0 à 100 mm/an.

Les seismes

Le volcanisme

EPFL


Premieres evidences de la derive des continents

- Edward Suess (Autrichien, 18ème S.) note des similarités entre les fossiles de la fin du paléozoïque: Glossopteris flora
- Il trouve aussi des similarités de glaciation de certaines séquences de roche:
 - Inde
 - Australie
 - Afrique du sud
 - Amerique du sud
- GONDWANA = super-continent

EPFL

© 2007 Thomson Higher Education

Alfred Wegener 1912-1915

Météorologue allemand

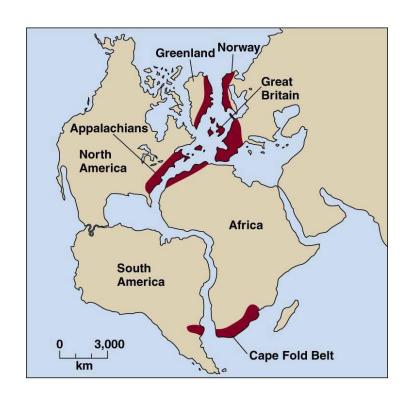
Il propose:

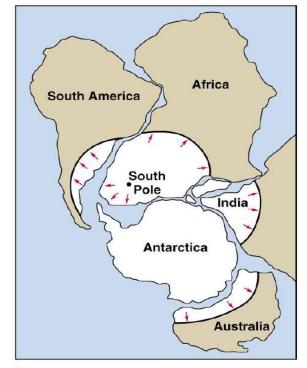
- que les continents étaient unis en un super continent appelé "Pangea" du grec "toutes les terres).
- Une série de carte montrant la désintégration de la Pangée.
- Il collecte un très grand nombre d'évidence géologique, paléontologique, et climatique.

Premieres evidences

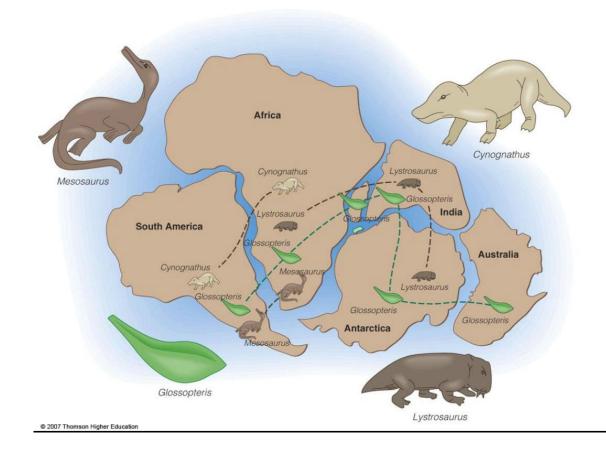
Les rivages des continents s'emboîtent.

Les séquences marines, non marines et glaciaires correspondent sur les 5 continents du Gondwana, y compris l'antarctique



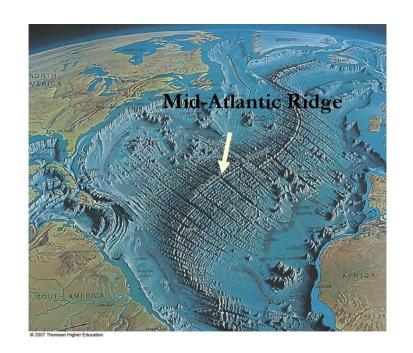

@ 2007 Thomasa Bishor Education

Emboitement des chaines de montagnes et des dépôts glaciaires


(h)

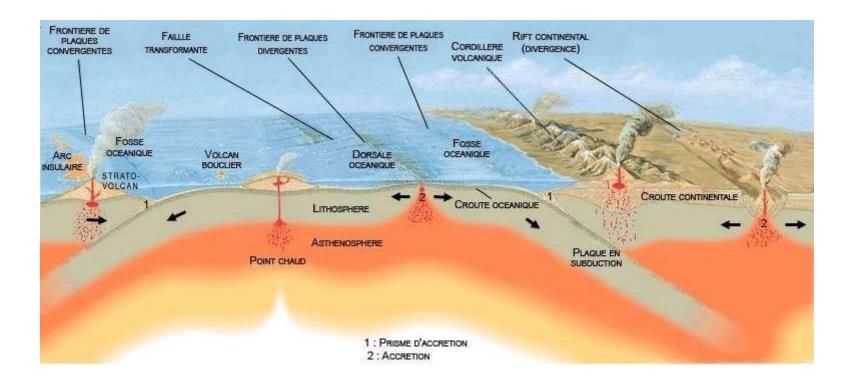
2001 Prooks/Colo Publishing/ITE

EPFL Correspondence des fossiles


- La plupart des géologues de l'époque n'ont pas accepté l'idée de dérive des continents.
- Il n'y avait pas de mécanisme approprié pour expliquer comment les continents pouvaient se déplacer sur la surface de la Terre
- L'intérêt pour la dérive des continents n'a repris que lorsque de nouvelles études sur le champ magnétique terrestre et les recherches océanographiques ont montré que les fonds océaniques étaient géologiquement jeunes (seconde guerre mondiale).

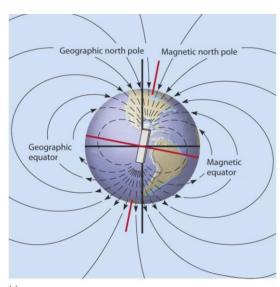
Nouvelles evidences de la tectonique des plaques

- Cartographie des océans montre:
 - Un système de dorsale. La plus grande chaine de montagne au monde: 65000 km.
 - La dorsale medio-atlantique, est la partie du système la mieux connue. Elle divise l'océan Atlantique en deux parties égales.

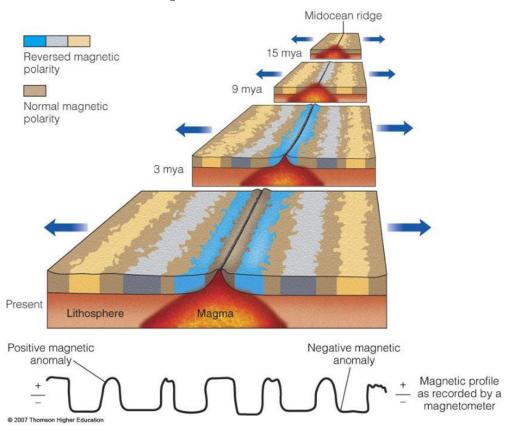

Expansion des fonds océaniques

Henri Hess en 1962 propose la théorie de l'expansion des fonds océaniques.

- Les croûtes continentales et océaniques bougent ensemble.
- Les fonds océaniques se créent et se divisent aux dorsales médioocéaniques et bougent latéralement aux dorsales.
- Le mécanisme responsable est la convection thermique dans le manteau.
- Le magma chaud remonte du manteau aux dorsales océaniques.
- La croûte froide subducte dans le manteau aux fosses océaniques.



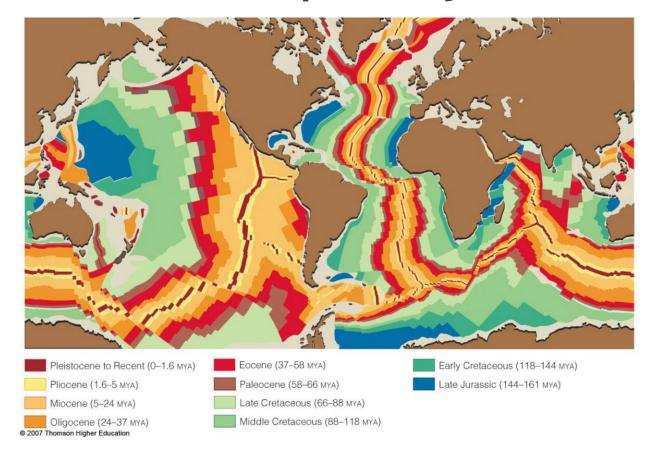
Autres évidences de l'expansion des fonds océaniques


- La terre est un aimant géant.
- Les pôles de l'aimant correspondent aux pôles géographiques.
- Paléomagnétisme est le magnétisme rémanent des roches anciennes, qui ont enregistrées la direction et l'intensité du champ.
- Quand une roche volcanique refroidit sous la température de Curie, les minéraux ferreux et magnétiques s'alignent avec le champs magnétique.
- Le champ magnétique s'inverse dans le temps (polarité normale ou inverse).

(a) © 2007 Thomson Higher Education

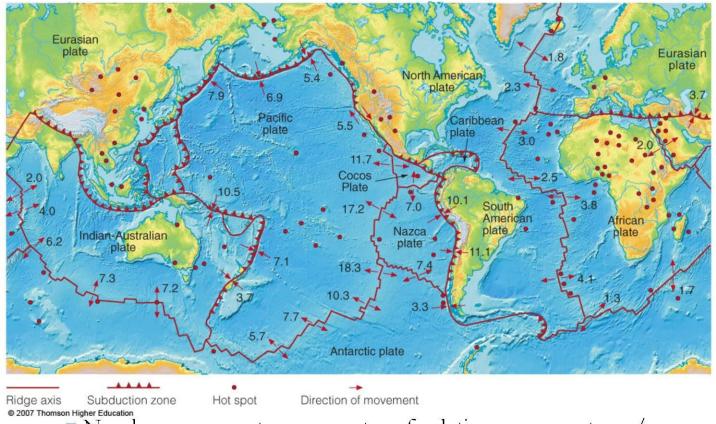
Autres évidences de l'expansion des fonds océaniques

La croute océanique est jeune



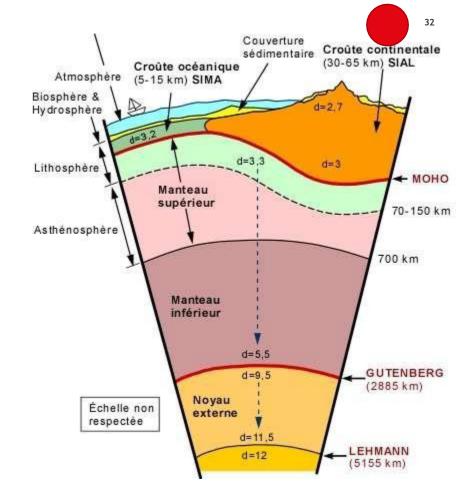
- La croûte océanique est jeune car crée aux dorsales et détruite dans les zones de subduction
- Datation radiochronologique indique que la croûte océanique la plus vieille est datée de 180 Ma (la croûte continentale la plus vieille date de 3.96 Ga)

La croute océanique est jeune

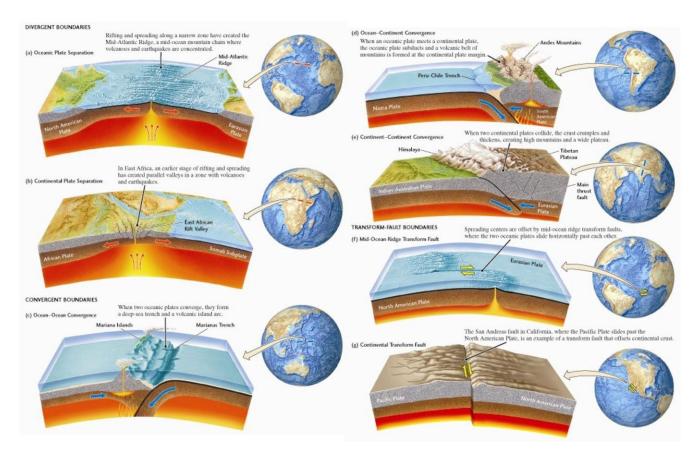


La théorie des plaques tectoniques repose sur un modèle simple:

- La lithosphère est rigide. Elle est composée de la croûte continentale, la croûte océanique et du manteau supérieur.
- Elle est composée de petites "pièces" appelées plaques tectoniques.
- Avec la croûte continentale, elle peut faire jusqu'à 250 km d'épaisseur.
- Avec la croûte océanique, elle peut faire jusqu'à 100 km d'épaisseur.



■ Numbers represent average rates of relative movement, cm/yr



- Les plaques tectoniques reposent sur le manteau asthénosphérique, chaud et semi-plastique.
- Le mouvement des plaques est dû à la convection mantellique (dissipation thermique)
 - Elles se séparent aux dorsales océaniques.
 - Elles convergent aux fosses de subduction.

Divergent-, convergent boundaries and transform faults

Frontières divergentes

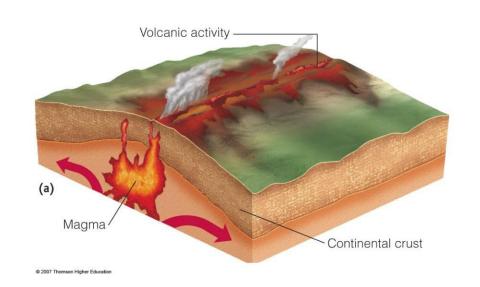
Injections successives de magma:

- refroidir et solidifier
- former une nouvelle croûte océanique
- enregistrer l'intensité et l'orientation du champ magnétique terrestre

Limites divergentes les plus connues se situent le long des crêtes des dorsales océaniques telles que la dorsale médio-atlantique

Les dorsales ont :

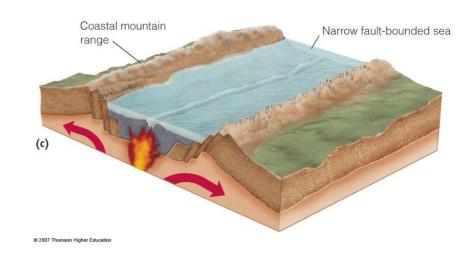
- une topographie accidentée résultant du déplacement de roches le long de grandes fractures
- tremblements de terre peu profonds



EPFL Rifting

continentale.

 Des frontières divergentes sont également présentes sous les continents au début de rupture


 Sous un continent le magma jaillit et la croûte est bombée, étirée et amincie.

EPFL Rifting

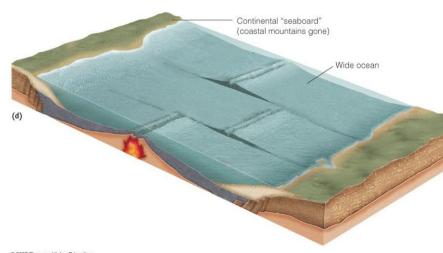
 L'étirement de la croûte produit des fractures et des vallées = rift.

• Exemple : Vallée du Rift est-Africain

EPFL

Levantine Rift Arabian Peninsula -20°N Carlsberg Ridge - Rift Rift valley M Oceanic crust Stretched continental crust Madagascar

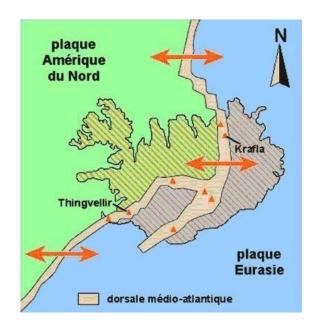
RIFT EST-AFRICAIN

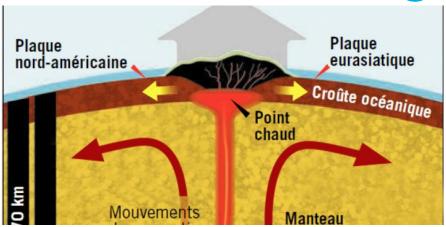


r Education

Océanisation

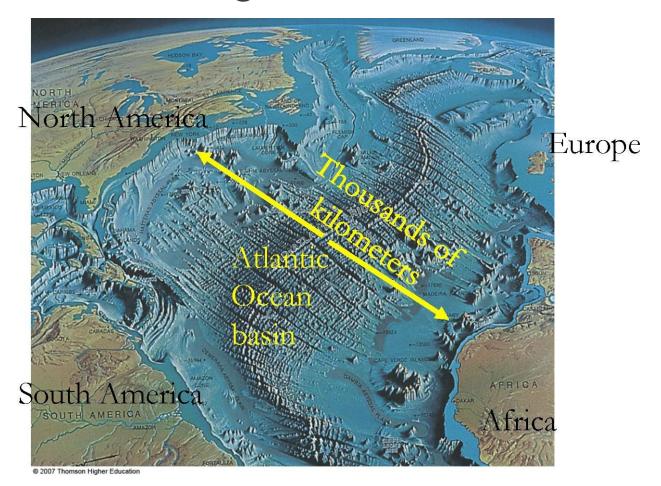
- Au fur et à mesure que l'extension progresse, certaines vallées du rift continuent de s'allonger et de s'approfondir jusqu'à ce que la croûte continentale finisse par se briser.
- Une mer étroite et linéaire est formée, séparant deux continents.
- Exemples : mer Rouge, Altantique




© 2007 Thomson Higher Education

EPFL

Océanisation



EPFL Frontières convergentes

Frontières convergentes

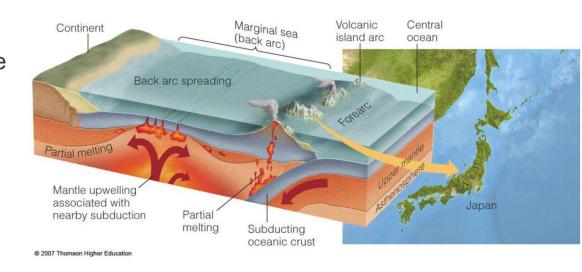
- L'ancienne croûte océanique est détruite aux frontières convergentes de sorte que la surface de la Terre reste la même.
- Lorsque une plaque océanique et une plaque continentale entrent en collision, la subduction se produit.
- La plaque subductée est chauffée et incorporée dans le manteau.

Frontières convergentes

Les frontières convergentes se caractérisent par :

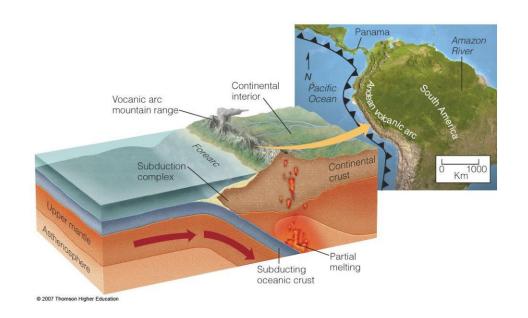
- déformation
- volcanisme
- formation de montagnes
- métamorphisme
- activité sismique
- gisements de minéraux précieux

Les frontières convergentes sont de trois types :


- océan océan
- océan continent
- continent continent

Convergence: Océan-Océan

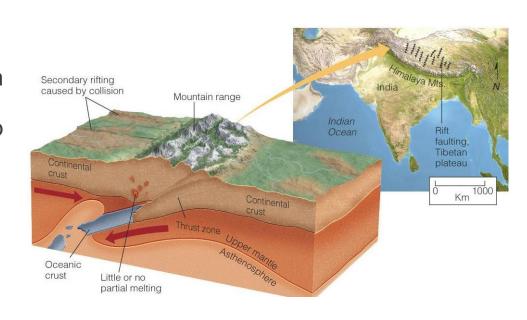
- Lorsque deux plaques océaniques convergent, l'une est subductée sous l'autre le long d'une interface océanocéan.
- La limite forme une fosse océanique et un arc volcanique.



Convergence: Océan - Continent

Il y a une limite convergente entre les plaques océaniques et continentales:

- Lorsqu'une plaque océanique plus dense subducte sous une lithosphère continentale moins dense.
- Le magma généré par la subduction perfore la croûte continentale pour former de grands corps ignés (=pluton = intrusion magmatique).
- Formation de volcans à lave andésitique.
- Exemple: Andes



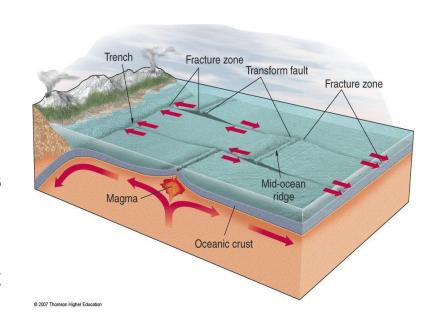
Convergence: Continent-Continent

- Deux continents sont initialement séparés par un océan, qui a été subducté sous l'un d'eux.
- Quand deux continents entrent en collision, la lithosphère ne peux pas subducter. Sa densité est trop faible (même si un continent peu glisser partiellement sous l'autre).
- Formation d'une chaîne de montagne (métamorphisme, déformation des roches, intrusion plutonique)

Orogenèse

- Une orogenèse est un épisode de déformation rocheuse intense et de formation de montagnes
- Elle résulte des forces de compression liées aux mouvements des plaques tectoniques
- Pendant la subduction, les roches sédimentaires et volcaniques sont pliées et fracturées en limite de plaque.
- La plupart des orogénèses se produisent le long des limites océan-continent ou des limites continent-continent.

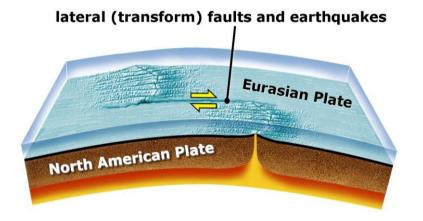
Frontières transformantes

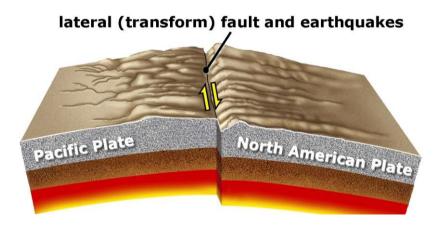

Le troisième type de limite de plaque est une limite transformante.

Les plaques glissent latéralement l'une par rapport à l'autre et à peu près parallèlement à la direction de mouvement de la plaque .

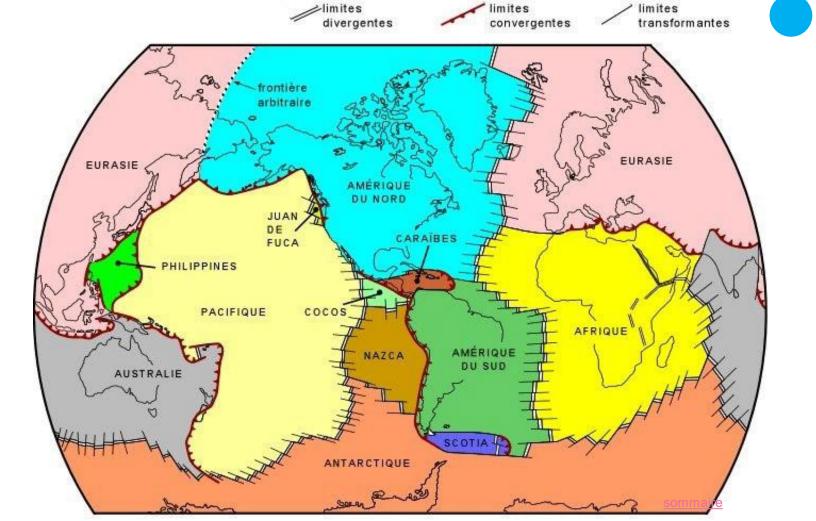
Le mouvement se traduit par:

- zone de roches intensément fragmentées
- nombreux tremblements de terre peu profonds


La majorité des failles transformantes relient deux dorsales océaniques: segments



Frontières transformantes


Frontières transformantes

- Exemple de la faille de San Andreas, Californie.
- Sépare la plaque Pacifique de la plaque nord Américaine.
- Connecte les dorsales (golf de Californie + plaque Juan de Fuca)
- Beaucoup de tremblements de terre en Californie proviennent de cette faille

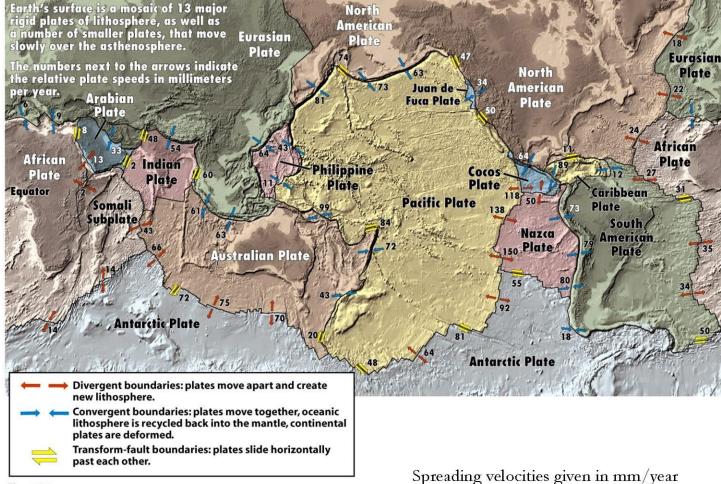


Figure 2-5 Understanding Earth, Fifth Edition © 2007 W. H. Freeman and Company

EPFL Vitesse des plaques tectoniques

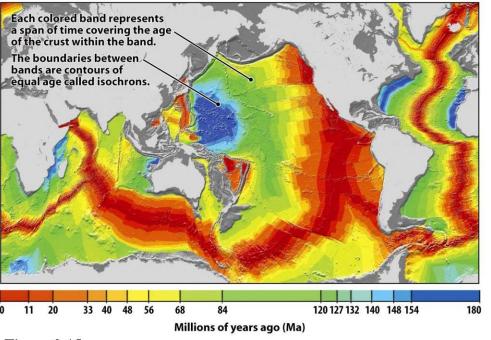
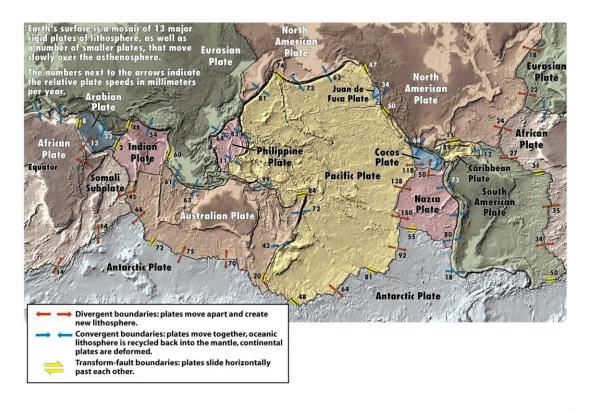



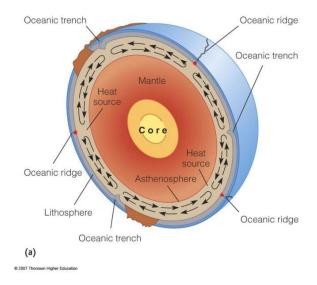
Figure 2.15

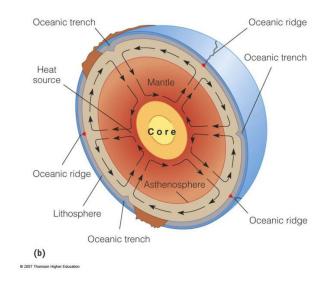
Magnetic isochrons on the seafloor date the oceanic crust

EPFL Vitesse des plaques tectoniques

Velocity of seafloor spreading = d / t

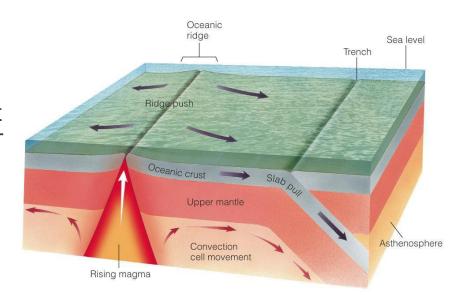
EPFL Vitesse des plaques tectoniques




Example area: mid-ocean ridge, south of Iceland

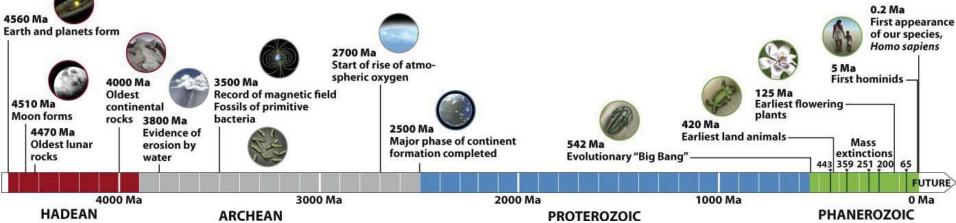
Mécanisme de la tectonique des plaques

 Convection mantellique de l'asténosphère ou du manteau entier



Mécanisme de la tectonique des plaques

 En plus d'un système de convection thermique, certains géologues pensent que le mouvement peut être facilité par Le «slab-pull» et le «Ridge-push».



© 2007 Thomson Higher Education

La terre dans le temps

Histoire de la terre **EPFL**

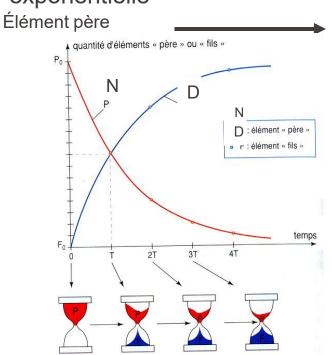
- 4.56 Ga: Formation du système solaire
- 3.5 Ga: Champ magnétique, premier fossile 420 Ma: Premiers animaux terrestres
- 2.7 Ga: Oxygène augmente dans l'atmosphère
- 2 5 Ga: Formation des continents
- 2-1 Ga: Vie plus complexe (algue)
- 600 Ma: Premier animaux
- 542 Ma: Explosion de la vie

359, 251, 200 Ma: Extinctions

443 Ma: Première extinction

- 125 Ma: Plantes à fleur
 - 65 Ma: Dernière extinction
 - 5 Ma: Premiers hominoïdes
 - 200 ka: Homo sapiens

Mesure du temps en géologie


- Méthodes radiochronologiques (âge absolu sur roche cristalline ou métamorphique)
- Méthodes stratigraphiques (âge relatif)
- Méthodes paléontologiques (âge biologique)
- Paléomagnétisme (lave océan)

Datation absolue: Radiochronologie

 Certains isotopes se désintègrent au cours du temps en suivant une loi exponentielle

Élément fils

$$N_t = N_0 e^{-\lambda t}$$

Avec
$$\lambda=\ln 2/T_{(1/2)}$$

$$T_{(1/2)=\text{demi-vie}}$$

- $C^{14} = 5,730 \text{ ans}$
- $U^{238} = 4,500,000,000$ ans
- Rb 87 = 47,000,000,000 ans

Datation absolue: Radiochronologie

- L'échantillon n'ait pas fait d'échange avec l'extérieur.
- L'élément fils doit rester dans la roche et il ne doit pas y avoir d'apport extérieur, l'élément père résiduel ne doit pas quitter la roche et il ne faut pas d'apport extérieur de l'élément père. On dit alors que le système est clos ou fermé. La fermeture du système identifie le démarrage du chronomètre naturel (cristallisation au métamorphisme)
- On ne peut pas dater les roches sédimentaires car pour ces roches, il y a toujours des échanges avec le milieu extérieur.

EPFL Exercise 3

• En creusant une fouille pour une fondation dans un versant, on pénètre dans une masse de débris de roche emballées dans une matrice argileuse. Dans la masse, on trouve des restes d'un arbuste qu'on échantillonne pour dater au C14. On obtient un carbone résiduel correspondant à 17% de la quantité initiale.

- Quel est l'Age de l'arbuste?
- Comment ce fait-il que ce tronc ait été retrouvé dans cette fouille?
- Que cela signifie-t'il pour l'ingénieur qui est responsable de la construction?

Exercise 3

- $N_t = N_0 e^{-\lambda t}$
- Avec λ=ln2/T_(1/2)
- $TC^{14} = 5,730$ ans
- 0.17=-t*ln(2)/5730
- \rightarrow -5730/ln(2)*ln(0.17)=14 648 ans

Datation relative Notion de stratigraphie

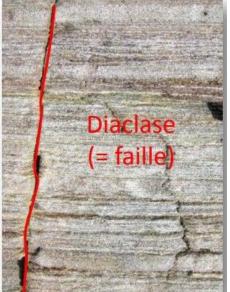
- Les couches se déposent horizontalement, toute déformation est ultérieure au dépôt.
- A une époque donnée, il se crée le même sédiment dans tous les points d'un bassin: continuité latérale.
- Les couches sédimentaires les plus basses sont plus anciennes que celles qui les remontent: principe de superposition
- Une structure (plis, faille, intrusion magmatique) qui en affecte une autre est plus récente que celle qu'elle affecte: principe d'intersection
- Si une roche détritique contient des particules provenant d'une roche reconnaissable, cette dernière roche lui est antérieure. (principe d'inclusion)
- Exception au principe de superposition (intrusion magmatique, terrasse fluviales emboitées, successions inverse en raison d'une déformation postérieure
- Lacune = absence d'information correspondant à un intervalle de temps donné dans une succession d'événements géologiques (érosion ou sédimentation interrompue)

Principe de continuité

 Niveau stratigraphique → niveau temporel à un instant t de l'histoire géologique

Principe de superposition

+ jeune


Instant t

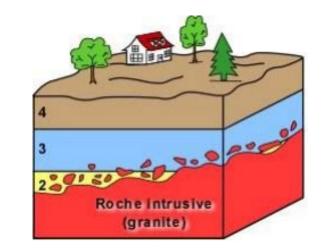
+ vieux

Principe de recoupement

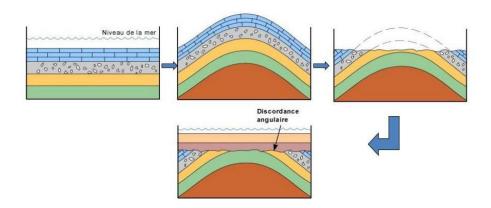
Principe d'inclusion

Lacune sedimentaire

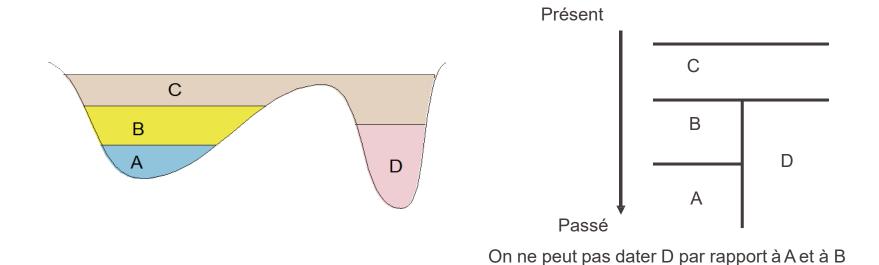
Erosion


Pas ou peu de dépôts

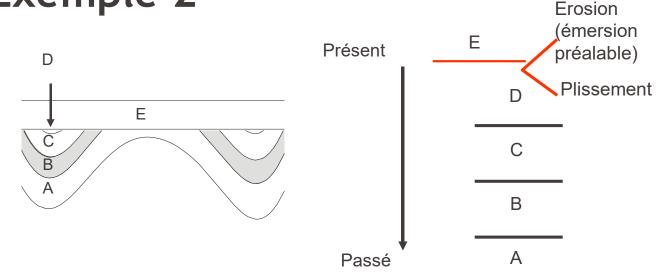
Dépôts dans le lac


Pas ou peu de dépôts

Discordance


Discordance érosion

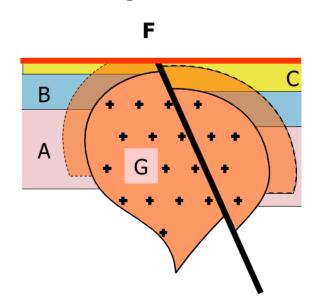
Discordance angulaire


EPFL Exemple 1

 Quand deux roches sédimentaires sont superposées, la plus profonde est la plus ancienne

EPFL

Exemple 2

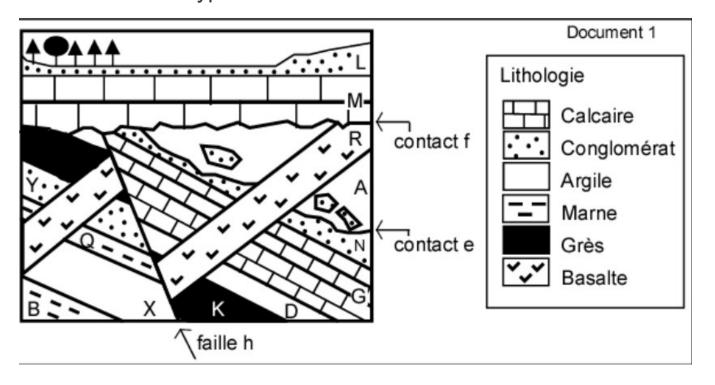

- ABCDE sont des couches sédimentaires
- Le plissement affecte les couches ABCD.

Il est donc postérieur

- La surface d'érosion tranche les plis. Elle est donc postérieure aux plis qu'elle affecte.
- La couche E recouvre la surface d'érosion. Elle est donc postérieure.

EPFL

Exemple 3



- ABC sont des couches sédimentaires.
- G est un pluton granitique. La zone de cuisson (= thermo métamorphisme
 = métamorphisme de contact) affecte les couches ABC.
- La faille recoupe le pluton et les strates ABC.
- La surface d'érosion recoupe la faille.

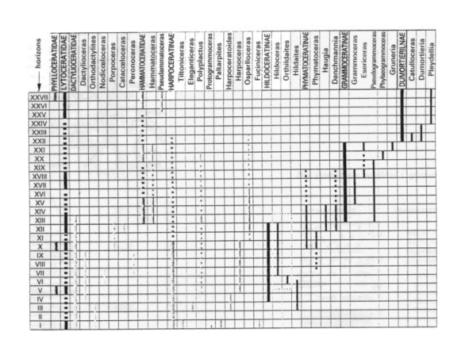
Exercise 4

 Retrouver... - l'ordre chronologique des événements - La nature des contacts e et f - Le type de faille de « h »

EPFL

Correction

- Ordre chronologique des événements:
- La nature des contacts e et f
- Le type de faille de « h »
- B, X, Q, Y, K, D, G, N, e, A, R, h, f, M, L.
- *e* = lacune par érosion; *f* = discordance angulaire
- *h* = faille normale


- Les roches sédimentaires contiennent souvent des fossiles
- Ces fossiles sont les restes ou les empreintes d'êtres vivants morts au moment de la formation des roches sédimentaires.
- Des espèces vivantes qui ont eu une durée d'existence relativement brève au cours des temps géologiques et qui ont eu une forte extension géographique sont donc de bons marqueurs temporels. On les appelle fossiles stratigraphiques.

Méthodes Paléonthologiques

- Les différentes couches sédimentaires ne possèdent pas les mêmes fossiles et on a pu ainsi associer un âge relatif à chaque couche possédant une association de fossiles définie. On a ainsi construit l'échelle stratigraphique internationale des temps géologiques
- Ainsi, des couches très éloignées géographiquement mais qui possèdent les mêmes fossiles stratigraphiques sont de même âge.

INTERNATIONAL STRATIGRAPHIC CHART

International Commission on Stratigraphy

_	_	_	(CO-76)			_
Eonothem	Erathem	System Period	Series Epoch	Stage	23	GSSP
			Holocene		0.0117	A
		any	Pleistocene	Upper	120000	
		terr		"lonian"	0.126	
		Quaternary		Calabrian	0.781	8
				Gelasian	1.806 2.588	1
			Pliocene	Piacenzian		D
				Zanclean	3.600	A
		0	Miccene	Messinian	7.246 11.608 13.82 15.97 20.43	A
	0	듄		Tortonian		A
	-	Neogene		Serravallian		88888
	Z			Langhian		
	enozoic			Burdigatian		
44				Aquitanian		A
anerozoic	O	#U	Oligocene	Chattian	23 03 28.4 ±0.1 33.9 ±0.1 37.2 ±0.1 40.4 ±0.2 48.6 ±0.2 55.8 ±0.2 56.7 ±0.2 -61.1 65.5 ±0.3	
20				Rupelian		A
0				Priabonian		The same
0		Paleogene	Eocene Paleocene	Bartonian		
an				Lutetian		
£				Ypresian		A
۵				Thanetian		A
				Selandian		8888
				Danian		A
				Maastrichtian		A
		Cretaceous	Upper	Campanian	70.6 ±0.6 83.5 ±0.7 85.8 ±0.7 -88.6 93.6 ±0.8 99.5 ±0.9	
				Santonian		
				Coniacian		
	010			Turonian		A
	020			Cenomanian		A
	0 8	tac	Lower	Albian		0
	00	Cret		Aptian	112.0 ±1.0	
	M			Barremian	125.0 ±1.0	
				Hauterivian	130.0 ±1.5	
				Valanginian	-133.9	
				Bernasian	140.2 ±3.0	
				Engold Harbard	145.5 ±4.0	

flori	Era	System		Epoch in	Stage	88	GSSP		
ŭ.	_	-	Upper		Tithonian	145.5 ±4.0 =	14-00		
				Kimmeridgian	150.8 ±4.0				
				****	Oxfordian	- 155.6			
				_	Callovian	161.2 ±4.0			
		O			Bathonian	164.7 ±4.0			
		88	M	iddle	Bajocian	167.7 ±3.5	-		
		1			Aalenian	171.6 ±3.0	-		
	oic	7			Toarcian	175.6 ±2.0	0		
	2 0		Lower		Pliensbachian	183.0 ±1.5	N		
	0				Constitution	189.6 ±1.5	-		
	8 8				Otternormal	196.5 ±1.0	1		
	2		_	_	Hettangian	199.6±0.6			
			Upper		Rhaetian	203.6 ±1.5			
o				Norian	216.5 ±2.0	503			
ō		Š	Middle Lower		Camian	-228.7	1		
N		ē			Ladman	237.0 ±2.0	0		
۲		Ţ			Anisian	- 245.9			
hanerozoic				ower	Olenekian	- 249.5			
ø					Induan	251.0±0.4	1		
=	zolc		Lon	pingian	Changhsingian	253.8±0.7	8		
			1000		Wuchiapingian	260.4±0.7	8		
					Capitanian	265.8 ±0.7	0		
		E	Guar	uadalupian	Wordian	268.0 +0.7	8		
			E	Ē			Roadian	270.6±0.7	0
		Per			Kungurian	275.6±0.7	100		
			Cisuralian	أسرين	Artinskian	284.4 ±0.7			
				uranam	Sakmarian	8 110 10 10 10			
	Paleo				Assesan	294.6±0.8	A		
		5	98	il const	Gzhelian	299.0±0.8			
				Upper	Kasimovian	303.4 ±0.9			
		잁		Middle	Moscovian	307.2 ±1.0			
		딀	100	Lower	Bashkirian	311.7 ±1.1	A		
		Carbor	. S U	Upper	Serpukhovian	318.1 ±1.3			
				Middle	Visean	328.3 ±1.6	A		
		~	著書	Lower	Tournaisian	345.3 ±2.1 359.2 ±2.5	-		

Eon.	Erathem	System	Series Epoch	Stage	Age	GSSP
		an	Chann	Famennian	358 2 ±2.5 * 374 5 ±2.6	D
			Upper	Frasnian		A
			Middle	Givetian	385.3 ±2.6	0
		6		Eifelian	391.8 ±2.7	0
		Devonian		Emsian	397.5±2.7	8
			Lower	Pragian	407.0 ±2.8	-
				Lochkovian	411.2 ±2.8	8
			Pridoli	Section of the last	416.0 ±2.8	2
			Friday	Ludfordian	418.7 ±2.7	8
			Ludlow	Gorstian	421.3 ±2.6	0
		C.			422.9 ±2.5	8
		Silurian	Wenlock	Homerian	426 2 ±2.4	1
		S		Sheinwoodian	428.2 ±2.3	A
o				Telychian	435.0 ±1.9	A
0	C	ian		Aeronian	439.0 ±1.8	1
N	0 2			Rhuddanian	443.7±1.5	1
2			Upper	Himantian	445.E±1.5	A
anerozoic	Paleo			Katian	455.8 ±1.6	0
8				Sandbian	44.6	8
_		Ordovic	Middle	Darriwhan	460.9 ±1.6	0
۵		ĕ		Dapingian	468.1±1.6	0
		0	Lower	Floren	4718±16	4
				Tremadocian	478.6 ±1.7	-
		Cambrian	Furongian	Stage 10	488.3 ±1.7	-
				Stage 9	- 492 *	
				Paibian	-496 *	-
					- 499	-
			Series 3	Guzhangian	- 503	20
				Drumian	- 506.5	0
			Series 2	Stage 5	- 510 *	
		0		Stage 4	+515 *	
				Stage 3	- 521 *	
			Terreneuvian	Stage 2	- 528 *	
			eneneuvian	Fortunian	542.0 ±1.0	D

This chart was drafted by Gabi Ogg. Intra Cambrian unit ages. A.G. Smith, et al. (2004; Cambridge University Press)

				g ratified definitions.
Copyri	right	© 2009	International	Commission on Stratigraphy

	Ecnothem	Erathem	System Period	Age	GSSP
		Neo- proterozoic	Ediacaran Cryogenian Tonian	- 542635 - 850 - 1000 - 1200 - 1400 - 1800 - 2300 - 2500 - 2800 - 2800	
	derozoic	Meso- proterozoic	Stenian Ectasian Calymmian		
nbrian	Profe	Paleo- proterozoic	Statherian Orosirian Rhyscian Sidenan		
Precambrian		Neoarchean Mesoarchean			
-	Archen	Paleoarchean		3200	①
		Econtrous	of a constitution	4000	(O)
~		Hadean (ir	norman)	~4600	

Subdivisions of the global geologic record are formally defined by their lower boundary. Each unit of the Phanerozoic (~542 Ma to Present) and the base of Ediacaran are defined by a basal Global Boundary Stratotype Section and Point (GSSP A). whereas Precambrian units are formally subdivided by absolute age (Global Standard Stratigraphic Age, GSSA). Details of each GSSP are posted on the ICS website (www.stratigraphy.org).

Numerical ages of the unit boundaries in the Phanerozoic are subject to revision. Some stages within the Cambrian will be formally named upon international agreement on their GSSP limits. Most sub-Series boundaries (e.g., Middle and Upper Aptian) are not formally defined.

Colors are according to the Commission for the Geological Map of the World (www.cgmw.org).

The listed numerical ages are from 'A Geologic Time Scale 2004', by F.M. Gradstein, J.G. Ogg. and "The Concise Geologic Time Scale" by J.G. Ogg, G. Ogg and F.M. Gradstein (2008).